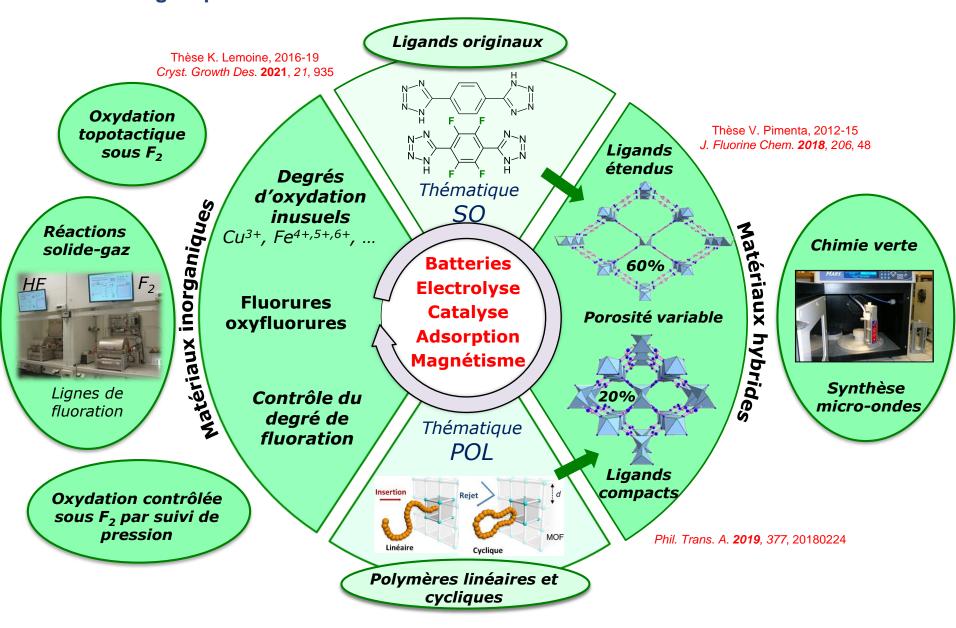


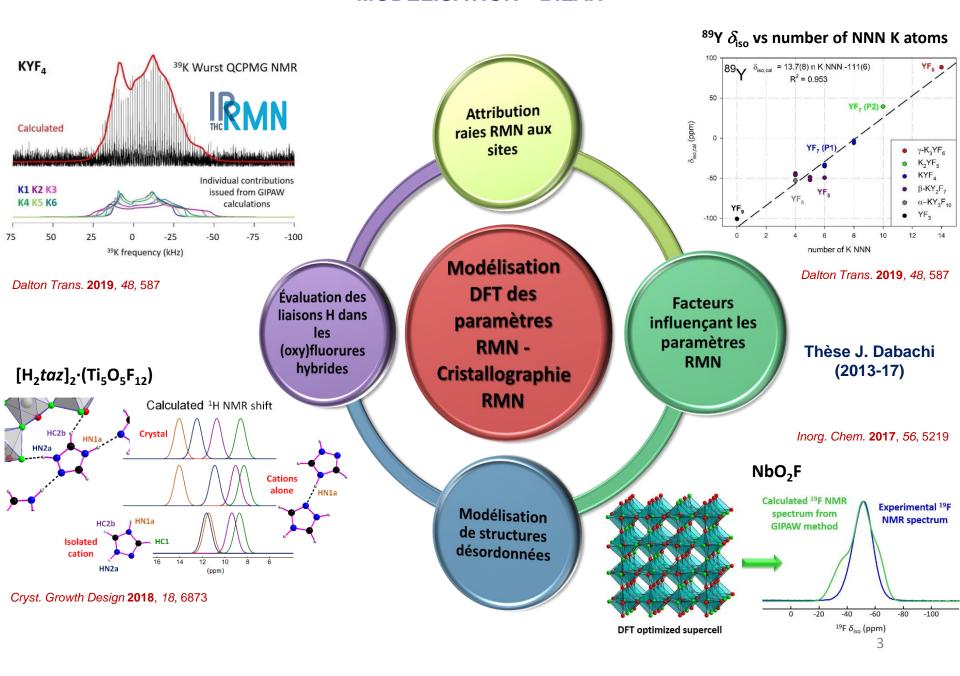
Axes scientifiques développés par le groupe Fluorures de l'IMMM

Cristallochimie d'investigation et modélisation Matériaux Fluorés pour l'énergie et Caractérisation par RMN du solide

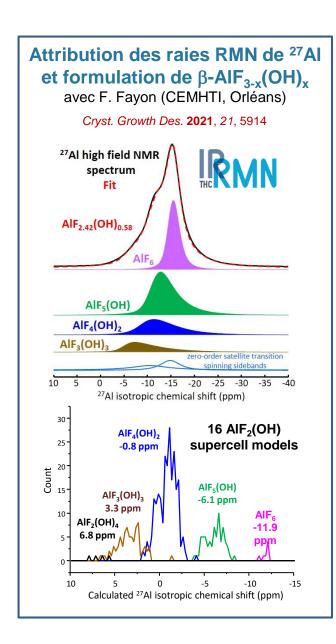
Personnels du groupe Fluorures

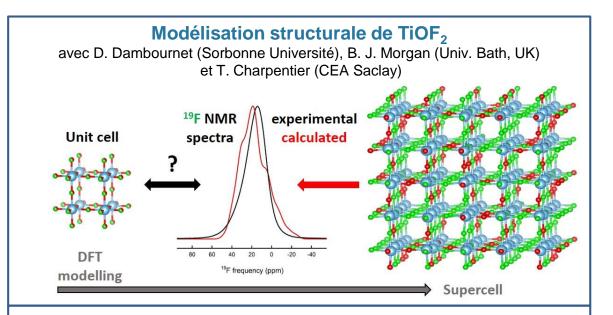
Body Monique (MCF), Boivin Edouard (MCF), Boulard Brigitte (MCF), Galven Cyrille (IE), Gao Youping (MCF), Guiet Amandine (MCF), Legein Christophe (Pr), Lhoste Jérôme (MCF), Maisonneuve Vincent (Pr), Ribaud Annie (MCF)




immm.univ-lemans.fr

Institut des Molécules et des Matériaux du Mans (UMR CNRS 6283) Faculté des Sciences et Techniques – Le Mans Université Avenue Olivier Messiaen, 72085 Le MANS Cedex 9, France


CRISTALLOCHIMIE D'INVESTIGATION - BILAN ET PROJETS Stratégies pour concevoir de nouveaux matériaux fluorés multifonctionnels



MODÉLISATION - BILAN

MODÉLISATION - PROJET

Supercell Modèles structuraux Sélection Calcul paramètres RMN Validation modèle

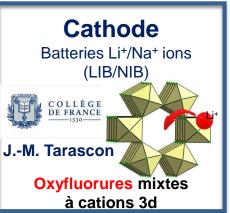
Thèse Ouail Zakary, 2020-23

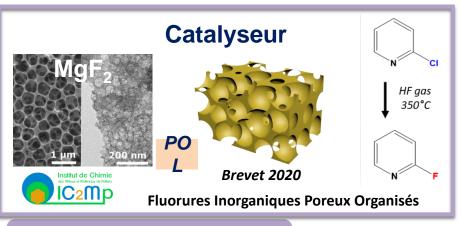
Modélisation structurale de fluorures inorganiques désordonnés

NaNbO₂F₂: ordonné

Na₂Ta₂O₅F₂: 10 sites X occupés statistiquement ?

statistiquement?


RbTa₂O₅F: un site X


NbOF₃ et TaOF₃: 2 sites X (a minima 1 occupé par O et F)

Variété tétragonale de **BaSnF**₄ (avec D. Dambournet)

MATÉRIAUX FLUORÉS POUR L'ENERGIE : BILAN

Thèse J. Chable, 2012-15 J. Alloys Compd. 2021, 862, 158683

Chem. Sci. 2019, 10, 9209

Batteries

Thèse K. Lemoine, 2016-19 Chem. Mater. 2019, 31, 4246

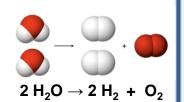
Catalyse hétérogène

Thèse Y. Wang, 2017-20 ACS Appl. Nano Mat. 2021

Contrôle du degré de fluoration, de la morphologie et mise en forme

Production de H₂

Photovoltaïque

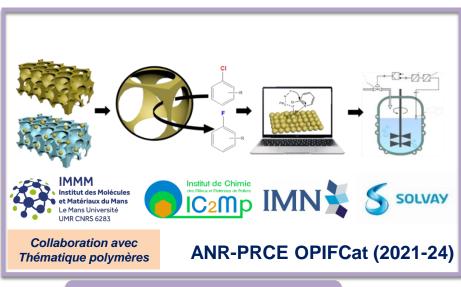

Thèse O. Maalej, 2012-15 J. Lumin. 2018, 193, 22

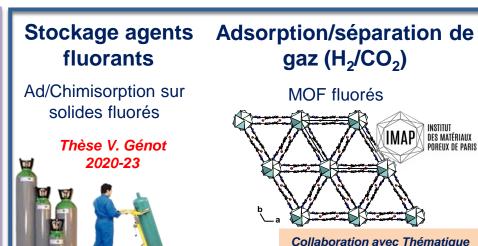
Catalyseurs anodiques

Oxyfluorures à base de fer pour l'électrolyse de l'eau

Université m de Montréal

Cnrs Projet Emergence (2020-21)


Convertisseur de fréquence



Verres, vitrocéramiques fluorés dopés TR/3d pour améliorer les rendements des cellules

MATÉRIAUX FLUORÉS POUR L'ENERGIE : PROJET

Catalyse hétérogène

Stockage et séparation de gaz

Développements fondamentaux et valorisation

Batteries

Electrolyte pour FIB

- ajout d'un liquide ioniquedépôt PVD de films minces
 - **Cathode pour LIB/NIB**

Fluorures de fer à degré inusuel

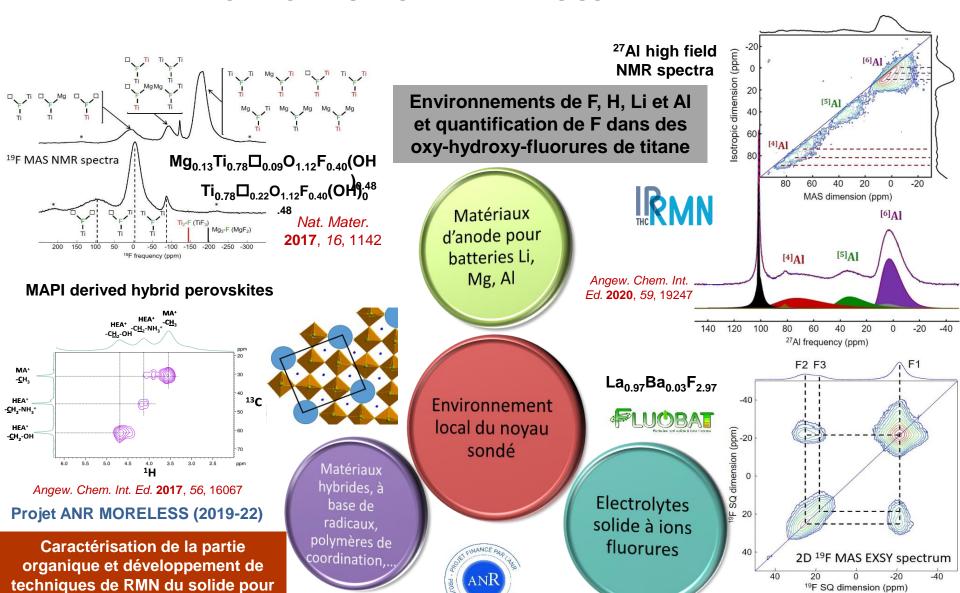
V. Pralong (Caen)

Production H₂

Catalyseurs anodiques

Oxyfluorures de fer pour l'électrolyse de l'eau

Projet S. de Champlain (2021-23)


N. Kornienko

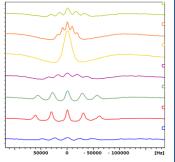
Synthèse Organique

Université de Montréal

A. Terry Thèse 2021-24

CARACTÉRISATION PAR RMN DU SOLIDE - BILAN

matériaux paramagnétiques

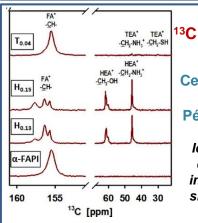

Environnement et mobilité de F dans des solutions solides de type tysonite

Dalton Trans. 2015, 44, 19625

CARACTÉRISATION PAR RMN DU SOLIDE - PROJET

RMN mono-microcristaux

Caractérisation structurale par DRX sur monocristal et RMN MAS du solide de monocristaux broyés



Microbobine RMN (600 mm ∅)

Bobines adaptées. Facteur de remplissage augmenté (plusieurs ordres de grandeur)

Spectres RMN 27AI microcristal de α-CaAIF₅ (incrément de 18° autour d'un des trois axes)

Enregistrement de spectres de noyaux quadripolaires (7Li, 23Na, 27AI, 93Nb, ...)

ACS Appl. Mater. Interfaces **2019**, 11, 20743

Collaboration externe

Projet ANR MORELESS 2019-22 (N. Mercier - MOLTECH-Anjou) Cellules solaires pérovskite plus stables et à teneur réduite en Pb Pérovskites hybrides (A,A')_{1+x}Pb_{1-x}I_{3-x},...

Identification des cations insérés et des sites occupés

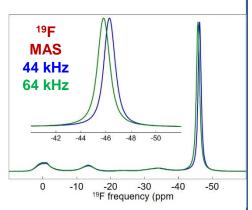
Collaborations internes

- Matériaux fluorés pour l'énergie
 - Catalyse hétérogène : Projet ANR-PRCE OPIFCat (2021-24
 - Stockage H₂, agents fluorants:

HS-AIF_{3,x}(OH)_x avant et après adsorption

- Electrolyte pour FIB
- Matériaux inorganiques Bactéricides Fluorures et hydroxy-fluorures bactéricides

Collaboration externe - D. Dambournet (PHENIX)


- Matériaux anode pour batteries : environnement de Al dans oxy-hydroxydes de titane $Ti_1 = D_0 = O_2(OH)_2 \cdot nH_2O$, désordonné et constitué de couches de type lépidocrocite et des oxydes de titane et d'hydronium hydratés : TGIR ²⁷Al
- · Conducteurs protoniques : incorporation de Mg et de Zn dans le réseau d'eau nanoconfinée d'une structure en feuillets de titanate: RMN ¹H & TGIR ²⁵Mg & ⁶⁷Zn...
- Conducteurs d'ions F-

Variétés cubique et tétragonale de BaSnF₄, Ba_{1-v}Sr_vSnF₄ (Thèse B. Mercadier):

Environnement et mobilité de F par RMN de ¹⁹F. Modélisation structurale/des paramètres RMN?

ERC Advanced Grant 2021:

"Tackling electrolyte fluoride Ion Mobility, stability and Interfaces for Next-Generation solid-state batteries"

Spectres RMN ¹⁹F BaSnF₄ tétragonal